Flux-mortar mixed finite element methods with multipoint flux approximation
نویسندگان
چکیده
The flux-mortar mixed finite element method was recently developed in Boon et al. (2022) for a general class of domain decomposition saddle point problems on non-matching grids. In this work we develop the Darcy flow using multipoint flux approximation as subdomain discretization. involve solving positive definite cell-centered pressure systems. normal interfaces is mortar coupling variable, which plays role Lagrange multiplier to impose weakly continuity pressure. We present well-posedness and error analysis based reformulating with quadrature rule. non-overlapping algorithm solution resulting algebraic system that reduces it an interface problem flux-mortar, well efficient preconditioner. A series numerical experiments presented illustrating performance grids, including applications complex porous media.
منابع مشابه
A Multiscale Mortar Multipoint Flux Mixed Finite Element Method
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces....
متن کاملA Multipoint Flux Mixed Finite Element Method
We develop a mixed finite element method for single phase flow in porous media that reduces to cell-centered finite differences on quadrilateral and simplicial grids and performs well for discontinuous full tensor coefficients. Motivated by the multipoint flux approximation method where sub-edge fluxes are introduced, we consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element...
متن کاملCoupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity
We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First order convergence in space and time is established in app...
متن کاملA Multipoint Flux Mixed Finite Element Method on Hexahedra
We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces to cell-centered finite differences. The paper is an extension of our earlier paper for quadrilateral and simplicial grids [M. F. Wheeler and I. Yotov, SIAM J. Numer. Anal., 44 (2006), pp. 2082–2106]. The construction is motivated by the multipoint flux approximation method, and it is based on an enh...
متن کاملA Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids
In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2023
ISSN: ['0045-7825', '1879-2138']
DOI: https://doi.org/10.1016/j.cma.2022.115870